Highest vectors of representations (total 5) ; the vectors are over the primal subalgebra. | \(g_{12}\) | \(g_{4}\) | \(g_{3}\) | \(g_{1}\) | \(g_{11}\) |
weight | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{3}\) | \(2\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0, 0) | \(\displaystyle V_{2\omega_{3}} \) → (0, 0, 2, 0) | \(\displaystyle V_{2\omega_{4}} \) → (0, 0, 0, 2) | \(\displaystyle V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}} \) → (1, 1, 1, 1) | |||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | |||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
| |||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}\) | |||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{3}\) \(0\) \(-2\omega_{3}\) | \(2\omega_{4}\) \(0\) \(-2\omega_{4}\) | \(\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}\) | |||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}}\) | |||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{3}}\oplus M_{0}\oplus M_{-2\omega_{3}}\) | \(\displaystyle M_{2\omega_{4}}\oplus M_{0}\oplus M_{-2\omega_{4}}\) | \(\displaystyle M_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}+\omega_{3}-\omega_{4}} \oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}+\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}} \oplus M_{-\omega_{1}-\omega_{2}-\omega_{3}-\omega_{4}}\) |